Geometric elements and classification of quadrics in rational Bézier form
نویسندگان
چکیده
In this paper we classify and derive closed formulas for geometric elements of quadrics in rational Bézier triangular form (such as the center, the conic at infinity, the vertex and the axis of paraboloids and the principal planes), using just the control vertices and the weights for the quadric patch. The results are extended also to quadric tensor product patches. Our results rely on using techniques from projective algebraic geometry to find suitable bilinear forms for the quadric in a coordinate-free fashion, considering a pencil of quadrics that are tangent to the given quadric along a conic. Most of the information about the quadric is encoded in one coefficient, involving the weights of the patch, which allows us to tell apart oval from ruled quadrics. This coefficient is also relevant to determine the affine type of the quadric. Spheres and quadrics of revolution are characterised within this framework.
منابع مشابه
An Optimal G^2-Hermite Interpolation by Rational Cubic Bézier Curves
In this paper, we study a geometric G^2 Hermite interpolation by planar rational cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpolated per each rational segment. We give the necessary and the sufficient intrinsic geometric conditions for two C^2 parametric curves to be connected with G2 continuity. Locally, the free parameters w...
متن کاملImplicit Equations of Non-degenerate Rational Bezier Quadric Triangles
In this paper we review the derivation of implicit equations for non-degenerate quadric patches in rational Bézier triangular form. These are the case of Steiner surfaces of degree two. We derive the bilinear forms for such quadrics in a coordinate-free fashion in terms of their control net and their list of weights in a suitable form. Our construction relies on projective geometry and is groun...
متن کاملBézier-like Parametrizations of Spheres and Cyclides Using Geometric Algebra
We introduce new Bézier-like formulas with quaternionic weights for rational curves and surfaces in Euclidean 3-space. They are useful for representation of Möbius invariant geometric objects. Any Bézier curves and surfaces on 2-spheres can be converted to the quaternionic Bézier (QB) form of twice lower degree. Our focus is on bilinear QB-surfaces: we derive their implicitization formula and s...
متن کاملNecessary and sufficient conditions for rational quartic representation of conic sections
Conic section is one of the geometric elements most commonly used for shape expression and mechanical accessory cartography. A rational quadratic Bézier curve is just a conic section. It cannot represent an elliptic segment whose center angle is not less than . However, conics represented in rational quartic format when compared to rational quadratic format, enjoy better properties such as bein...
متن کاملA simple method for approximating rational Bézier curve using Bézier curves
This paper presents a simple method for approximating a rational Bézier curve with Bézier curve sequence, whose control points are those of degree-elevated rational Bézier curves. It is proved that the derivatives with any given degree of the Bézier curve sequence constructed this way would uniformly converge to the corresponding derivatives of the original rational Bézier curve. © 2008 Publish...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 300 شماره
صفحات -
تاریخ انتشار 2016